Developing an Image-Based Classifier for Detecting Poetic Content in Historic Newspaper Collections

نویسندگان

  • Elizabeth Lorang
  • Leen-Kiat Soh
  • Maanas Varma Datla
  • Spencer Kulwicki
چکیده

The Image Analysis for Archival Discovery (Aida) project team is investigating the use of image analysis to identify poetic content in historic newspapers. The project seeks both to augment the study of literary history by drawing attention to the magnitude of poetry published in newspapers and by making the poetry more readily available for study, as well as to advance work on the use of digital images in facilitating discovery in digital libraries and other digitized collections. We have recently completed the process of training our classifier for identifying poetic content, and as we prepare to move in to the deployment stage, we are making available our methods for classification and testing in order to promote further research and discussion. The precision and recall values achieved during the training (90.58%; 79.4%) and testing (74.92%; 61.84%) stages are encouraging. In addition to discussing why such an approach is needed and relevant and situating our project alongside related work, this paper analyzes preliminary results, which support the feasibility and viability of our approach to detecting poetic content in historic newspaper collections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

A New Approach for CBIR Feedback based Image Classifier

Recent years have seen a rapid increase in the size of digital image collections. This ever increasing amount of multimedia data creates a need for new sophisticated methods to retrieve the information one is looking for. The classical approach alone cannot keep up with the rapid growth of available data anymore. Thus content-based image retrieval attracted many researchers of various fields. T...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Relevance feedback using a Bayesian classifier in content-based image retrieval

As an effective solution of the content-based image retrieval (CBIR) problems, relevance feedback has been put on many efforts for the past few years. In this paper, we propose a new relevance feedback approach with progressive leaning capability. It is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. It can utilize previous users’ fee...

متن کامل

آشکارسازی و تعیین مکان متون فارسی - عربی در تصاویر ویدیویی

Video text detection plays an important role in applications such as semantic-based video analysis, text information retrieval, archiving and so on. In this paper, we propose a Farsi/Arabic text detection approach. First, with an appropriate edge detector, edges are extracted and then by using edges cross ponts, artificial corners are extracted. Artificial corner histogram analysis is done for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • D-Lib Magazine

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2015